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P A R A M E T R I C  R E S O N A N C E  IN THE SYSTEM: L I Q U I D  

IN T A N K  + E L E C T R I C  M O T O R  

T. S. Krasnopoi'skaya and A. Yu. Shvets UDC 532.595:534.1 

Resonance oscillations and waves in a liquid contained in cylindrical and spherical tanks (tanks with at least one angular 

coordinate) are adequately described by pendulum models [3, 5-8, 10-13]. The resonance phenomenon itself, i.e., dominant 

oscillations in one or more modes, can be used to reduce the investigation of continuous systems to low-dimensional models. 
This procedure is well known. What are its most important features from the standpoint of science today? First, it relegates the 
coupling of resonance modes with nonresonance modes to secondary status. Quantitatively, the equations describing resonance 
modes in terms of their coefficients are subject to the influence of norrresonance modes. However, the influence of instability 
of these modes on the dynamics of resonance modes is eliminated, so that the complexity of the problem is significantly 

diminished. Second, when this procedure is used in problems of fluid dynamics in a cylinder or a sphere, it distinguishes -- as 
a minimum -- equations for two "coupled" modes [4] having the same eigenfrequencies and corresponding to eigenfunctions 

in the angular coordinate 0 of the form cos nO and sin nO. When the eigenfrequencies corresponding to modes with different 

wave parameters are close to one another, this procedure [5] yields four equations, taking into account the coupling and mutual 

influence for resonance modes. 
Mode coupling can be regarded as an avenue by which the investigated deterministic systems acquire strange attractors, 

because the averaged equation for one mode (not coupled with other modes) does not have stabilized states of the chaotic 
attractor type. For coupled modes, when a resonant excitation directly stimulates one mode (or in the case of oscillations of a 
spherical pendulum with the excitation of plane oscillations), the amplitude-frequency response of the excited mode has an 
additional region of instability besides the standard region. This new region is the result of instability of the zeroth solution of 
the second coupled mode, which is not excited directly. The existence in the system of a second mode, which has a resonance 

frequency but is not excited directly, can disrupt the stability of the oscillatory states in the first, directly excited mode. This 

phenomenon is clearly demonstrated in the pendulum model [10] and is observed in all distributed systems having an angular 

coordinate [2, 4, 12]. 
A third feature of the given procedure is its applicability for preliminary fluid-dynamic analysis when the oscillations 

of the tank are excited by different techniques in the spherical pendulum model. It has been shown [7, 11, 12] that the forced 
and parametric resonances associated with the oscillations of a liquid in tanks are described by different systems of equations 
having qualitatively different properties. A chaotic steady state, which cannot exist for parametric oscillations, is possible in the 

case of forced oscillations. 
We have previously carried out a detailed analysis of the oscillations of a liquid in a cylinder, taking into account the 

effects of interaction with the energy source [3]. In this article we investigate the behavior of parametric resonance in the same 

mechanical system. We have two objectives in mind: to show that interaction with the excitation mechanisms can generate chaos 

and to demonstrate new attributes exclusive to parametric resonance. 
We consider the mechanical system in Fig. 1. The shaft of an electric motor is connected through a slider-crank 

mechanism to a platform, on which is mounted a rigid cylindrical tank of radius R partially filled with a liquid. When the crank 
arm x o rotates through an angle ~, the platform acquires a displacement of the form v(t) = x o cos o(t). To describe the 
oscillations of the free surface, we introduce cylindrical coordinates Oxr0, whose origin is located at the intersection of the tank 
axis with the undisturbed surface of the liquid. We can then write the equation for the relief of the free liquid surface in the form 
x = ~(r, 0, t). We assume that the liquid is inviscid and incompressible, has a density p, and Fills the cylindrical tank of cross 

section S to a depth x = - d .  
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Fig. 1 

We seek the relief function of the liquid surface as an expansion in eigenmodes [3] 

rl ( r,O,t ) = 

= ~.e [q~( t  )tc,](r)cosiO + q~(t),c,/(r)siniO]. 
t.j 

Retaining the same notation as in [2], we write the kinetic energy of the combined system in the form 

(1) 

r = ~ + i r a  o + i p ~ % . . , %  q;~. ~2) 
i , f ,  rn,n 

Here I is the moment of inertia of the motor shaft, m o is the mass of the tank plus the liquid, and aij,z n denotes nonlinear 
functions of q,,~s(t) [9, 11]. 

The potential energy of the displacements of the free surface of the liquid is equal to [9] 

~l l c , s  c , s  
V - - p f f d s f  ( g + i , ' ) x d x - - - i p S ( g + v ' )  ~, qty qq ' (3) 

s o i,l 

where g is the free-fall acceleration. 

The Lagrangian of the system therefore acquires the form [8, 10] 

1 .b2  1 x2b2sin2a + 1 a ;¢'Sa c'" 1 L = ~-i + ~.% 
t~J,ttl,rL 

1 (4) + &'sin a)  ~ qoC'S qqC'" _ "~pSg ~ qqC's qiyC's" 
t j t d 

As a result, we obtain the following Lagrangian equations for a(t): 

. .qtd qi 1 -2xoPS&C°sa ~" qiyC'SqiyC's+~(°)-H(a)" 
,1 l , j  

(5) 

The last two terms on the right-hand side of Eq. (5) describe the driving torque and the internal friction torque of the motor. 

Let the shaft rotation speed 6(t) in steady-state operation of the motor be close to 2co 1, where w I is the natural frequency of 
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T ~ L E 1  

Value of the parameter Type and brief description of 

steady state N1 

2.25 - -  2.04 Half-wave limit cycle 

2.03 - -  1.91 Full-wave limit cycle 

1 . 9 -  1.88 

1 .87 

Two-wave limit cycle 

Four-wave limit cycle 

1.85 - -  1.81 Full-wave chaos with two windows 
i 

1.8 - -  1.66 Half-wave chaos with two windows 

1.65 Four-wave limit cycle 

1.64 Half-wave chaos with two windows 

1.55 - -  1.51 

1.5 - -  1.48 

Half-wave limit cycle 

Full-wave limit cycle 

1.47 - -  1.46 Two-wave limit cycle 

1.45 Four-wave limit cycle 

1.44 Eight-wave limit cycle 

1.43 - -  1.37 Half-wave chaos with two windows 

1.36 - -  1.12 Full-wave chaos with two windows 

1.11 - -  0.9 Continuous chaos 

0.89 - -  0.35 Half-wave chaos with two windows 

0.34 Two-wave limit cycle 

the fundamental of the free surface oscillations, which corresponds to modes qC 11 (t)~l l(r) cos 0 and q:l (t)Ki i(r) sin 0. 
We now introduce the small positive parameter 

(6) 

We also assume that 

a - 2o, l - ,2 colv. (7) 

We approximate the oscillations of the free surface of the liquid by oscillations in the fundamental and second modes [11], 

specifying their amplitudes in the form 

q: l ( t )  = e,~. p 2 ( z ) c o s ~ + q 2 ( l ' ) ~ / l  ; 
(8) 

¢o~ (t) = ,2a [ %  (~)coso. + no~ (~)sin~, + %, (~); 
~ C , $ -  
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Here r is slow time, ~r e20/4. Determining the dimensionless amplitudes c,s c,s c,s = Aij (r), Bq (r), and C~ (r), of  the second modes 

by Miles' method [3, 11, 12, 13] in terms of the amplitudes pl(r), q1(r), p2(r), and q2(r) and invoking the Lagrangian averaging 

procedure over the explicitly occurring fast time o(t), we obtain a system of equations for the amplitudes of the dominant modes: 

a ~  

dl: ~ - a P l  

dr  ~ - a q l  

- ( v  + a e  - 2)q~ + BM~,2; 

-- (v + AE + 2 ) p  I + BMq2; 

a ~  
dr  ~ - a P 2  - 

d q  2 

d r  - aq2  + 

(v + AE -- 2 )q  2 + BMPl; 

(v + AE + 2 ) p  2 + BMql; 

d}' 

(9) 

The last equation in the system (9) is obtained from the equation for the speed of rotation of the shaft ~r (5) after the 
averaging procedure has been applied and with the use of relations (7) and (8). Moreover, in the system of equations (9) ct 

denotes the coefficient of additional damping forces [3, 11-13] acting on the liquid oscillations, 

1 ~ ~ q~); 
e = ~(p,  + q ~ + p ;  + 

I p S : t  
M = (p,q,  - p~q,); N ,  = ~ ( U o  - 2 N ~ % ) ~ ,  - ( 2~  + ,~o~) ,o, :k ,~ '  

N 0 and N 1 are constants of the linear static performance curve of the motor [3], kit is the eigenvalue corresponding to the 

frequency ~o 1, and A and B are constants, whose values depend on the. diameter of the tank and the depth to which it is filled 
with the liquid [3, 12]. 

We have carried out a large series of numerical experiments in the parameter space of the system of equations (9) to 

plot the attractors of this system and to determine their quantitative and qualitative characteristics. We have devoted special 

attention to the detection of regions in which chaotic attractors exist for the system of equations (9). The details of the numerical 

procedure are described in [3]. Here we give certain results obtained in the numerical experiments. 

We assume that the basic parameters and initial conditions of the system (9) are 

a--O,8;A=l,12;B= - 1,$31;N 2 = - 0,25;/~ =4,5; 

(lO) 
t,t= (o )  = q i (0)  = o,1;v (o)  =o;1,2(o ) = q2(o)  =1. 

The parameter NI, which characterizes the slope of the performance curve of the motor, is adopted as the bifurcation 

parameter. The choice of N 1 as the bifurcation parameter enables us to investigate the influence of energy losses in the excitation 
source on the dynamics of the free surface oscillations of the liquid. 

Table 1 shows the types of attractors of the system (9) that are encountered as the parameter N 1 is varied in the range 
0.3 < NI < 2.25. 

We now analyze the results in Table 1 in detail. 

As N 1 is varied in the interval 2.04 ___ N 1 <_ 2.25, a stable, half-wave limit cycle exists in the system, but becomes 
unstable at N l = 2.03. 

At this value of N 1 the system acquires a full-wave limit cycle as the result of a period-doubling bifurcation. 

Two-wave and four-wave limit cycles are generated in the system at the points N 1 = 1.9 and N! = 1.87 as a result of 
further period-doubling bifurcations. The period-doubling bifurcation process terminates at the critical point N 1 = 1.85 with the 
emergence of a chaotic attractor, whose phase portrait is shown in projection onto the P2q2 plane in Fig. 2a. The transition from 
regular to chaotic motions adheres strictly to the Feigenbaum scenario. 

The power spectrum logS(O) (where 0 is the spectral frequency) [7] of the chaotic attractor at N 1 = 1.85 is shown in 
Fig. 2b. The principal Lyapunov exponent of this attractor is equal to 0.08. The chaotic attractor has a full-wave structure with 
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two internal "windows." This type of chaotic attractor structure is observed as N 1 is varied in the interval 1.81 < N 1 < 1.85. 

The full-wave tapes of the attractor then merge into a half-wave tape as a result of internal bifurcations of the chaotic attractors. 

This merging takes place at N 1 = 1.8. The projection of the phase portrait of this chaotic attractor onto the P2q2 plane is shown 

in Fig. 2c. It is evident from Fig. 2c that the half-wave chaos tape still has two internal windows. The power spectrum of the 

chaotic attractor at N 1 = 1.8 is shown in Fig. 2d. In contrast with the spectral characteristic of the preceding case, the trough 

in the middle-frequency part of the curve no longer exists. The principal Lyapunov exponent of the chaotic attractor (Fig. 2c) 

is equal to 0.14. The chaotic attractor preserves the given structure as the parameter N 1 is varied in the interval 1.66 < N 1 < 

1.8. However, as N 1 is varied between the above-indicated limits wherein the structure of the projections of the phase portraits 

remains constant (half-wave with two windows), they undergo certain evolutions as a result of internal bifurcation phenomena. 

As the values of N 1 are decreased, the attractor becomes increasingly randomized in the sense that the trajectories begin to fill 

up the phase volume with ever-increasing density, decreasing the area of the window in the p2q2-projection. The amplitudes of 

all the functions Pi, qi, and v are observed to increase in this case, as do the values of the principal Lyapunov exponents. Birth- 

and-death bifurcations of a great many limit cycles are observed in the system within the comparatively narrow interval 1.66 < 

N l < 1.65, culminating in the emergence of a four-wave limit cycle in the system at N 1 = 1.65. Then at N 1 = 1.64 the system 

again acquires a chaotic attractor, which has a half-wave, two-window structure. The transition from steady-state regular motion 

to steady-state chaotic motion now takes place through intermittency [1]. This chaotic attractor again has a half-wave structure 

with two windows. In contrast with the preceding case, however, the principal Lyapunov exponent now increases to a value of 

0.5. This indicates an increase in the rate of divergence of nearby phase trajectories of the attractor. 

The detailed investigation of the bifurcations of the system are continued, beginning with N 1 = 1.55, at which a stable 
limit cycle exists in the system. A cascade of period-doubling bifurcations of the limit cycles then begins anew as N 1 is further 

reduced. It is evident from Table 1 that one-, two-, four-, and eight-wave limit cycles are generated in the system at the points 

N 1 = 1.5, N 1 = 1.47, N 1 = 1.45, and N I = 1.44. The cascade of period-doubling bifurcations terminates at the critical point 
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Fig. 3 

N 1 = 1.43 with the generation of a chaotic attractor. As before, the transition from regular to chaotic motions takes place in 

accordance with the Feigenbanm scenario. The projection of the phase portrait of the chaotic attractor onto the P2q2 plane and 

the power spectrum for N 1 = 1.4 are shown in Figs. 3a and 3b, respectively. 

The projection of the phase portrait of this attractor has the structure of a full-wave tape with two internal windows. 

The chaotic attractor has such a structure in the interval 1.37 _< N 1 _< 1.43. Then as N 1 is further decreased, internal 

bifurcations of the chaotic attractors are observed in the system. For example, the full-wave tape of the attractor merges into 

a half-wave tape at the point N 1 = 1.36. The projection of the phase portrait of the chaotic attractor onto the P2q2 plane and 

the power spectrum of the chaotic attractor with this structure at N 1 = 1.25 are shown in Figs. 3c and 3d, respectively. 

Subsequent internal homoclinic bifurcations lead to the generation of a chaotic attractor having a half-wave continuous structure, 

i.e., chaos with the most fully developed randomization. This type of chaotic attractor exists as N 1 is varied in the interval 0.9 __. 
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Fig. 4 

N 1 -< 1.11. The projection of the phase portrait of the chaotic attractor onto the Pzq2 plane and the power spectrum of this type 

of chaotic attractor at N 1 = 1.05 are shown in Figs. 3e and 3t, respectively. At N 1 = 0.89 the system once again acquires a 

chaotic attractor with a half-wave, two-window structure. This chaotic attractor structure exists for 0.35 < N] _< 0.89. At N 1 = 

0.34 the chaotic attractor is superseded by a regular two-wave limit cycle. 

We note that the structural differences of the attractors are well illustrated not only by the projections of the phase 

portraits, but also by their spectral characteristics shown in Figs. 3b, 3d, and 3f. For example, full-wave chaos has distinct 

troughs at low and middle frequencies. Half-wave, two-window chaos, in turn, has only a low-frequency trough, and the 

structure of half-wave continuous chaos resembles a continuous noise plateau. 

It is instructive to investigate the variation of such an important quantitative characteristic of the chaotic state as the 

principal Lyapunov exponent for the various types of chaotic attractors. We have established the fact that the Lyapunov exponent 

increases with the evolution of a chaotic attractor. For example, the principal Lyapunov exponent >'1 = 0.08 at N I = 1.4. This 

exponent then becomes equal to 0.14 for half-wave, two-window chaos at N l = 1.25. The value of >'1 increases to 0.2 for 

continuous chaos at N 1 = 0.5. The exponent X] subsequently decreases to 0.12 at N 1 = 0.5. The dynamics of the variation of 

the principal Lyapunov exponent is fairly typical. It indicates an increase in the rate of divergence of nearby phase trajectories 

for more randomized chaotic attractors. 

We also consider a very significant aspect of the problem. It follows from our investigations that the different types of 

chaotic attractors existing in the system of equations (9) as N 1 is varied in the interval 1.64 _< N 1 _< 1.85 have a great deal in 

common with the corresponding types of chaotic attractors that exist in the system as the parameter N 1 is varied in the interval 

0.35 < N] _< 1.43. This commonality is manifested both in the structure of the corresponding projections of the phase portraits 

and in the similarity of the spectral characteristics. However, there is one major difference, which we illustrate in the example 

of a half-wave, two-window attractor. 
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Figures 4a and 4b show the projections of the phase portrait of the chaotic attractor constructed at N 1 = 1.8 onto the 

p2 z, and q2 j, planes, respectively. Figures 4c and 4d show the same projections for the chaotic attractor constructed at N 1 = 1.25. 

It is evident from these figures that the projection of the phase portrait of the chaotic attractor constrficted at N 1 = 1.8 onto the 

p2 j, plane is structurally similar to the projection of the phase portrait of the chaotic attractor constructed at N 1 = 1.25 onto the 

q2v plane. Conversely, the projection of the phase portrait of the first attractor onto the q2 v plane is structurally similar to the 

projection of the phase portrait of the second attractor onto the p2 v plane. 

It has been established on the basis of our investigations that the corresponding projections for other types of chaotic 

attractors will exhibit the same kind of similarity. 

Consequently, the projections of the phase portraits of chaotic attractors existing in the interval 1.64 <_ N 1 < 1.85 onto 

the p2 v and p ly  planes are structurally similar to the projections of the phase portraits of the corresponding types of attractors 

existing in the interval 0.35 < N 1 _ 1.43 onto the q2 v and ql ~ planes. Conversely, the projections of the phase portraits of 

chaotic attractors in the interval N 1 E (1.64, 1.85) onto the q2 v and qlv planes are structurally similar to the projections of the 

phase portraits of the chaotic attractors in the interval N 1 E (0.35, 1.43) onto the p2v and pl~, planes. 

Another similarity between the projections of the phase portraits both for regular and for chaotic attractors is associated 

with the symmetry of the system of equations (9) with respect to the variables Pl, ql and P2, q2. As a consequence of this 

symmetry, the projection of the phase portrait onto the Plql  plane coincides with the projection onto the P2q2 plane to within 

a constant factor in any steady state, either regular or chaotic. 

Finally, we note.that the Poincar6 sections of all the chaotic attractors have a tape structure. As a typical illustration 

of this kind of structure, Fig. 5 shows the p2q2-projection of the Poincar6 section of the chaotic attractor constructed at N 1 = 

1.4 in the plane v = - 1 . 5 .  

Special emphasis must be given to the fact that the chaotic attractors are typical steady states of the investigated 

dynamical system. It follows from the results in Table 1 that the parameter N 1 has rather large intervals in which chaotic 

attractors exist. We have also investigated the bifurcations of the system of equations (9) as the parameters c~ and N 2 are varied. 

These investigations have disclosed the existence of fairly large intervals of a and N~ in which the system (9) has chaotic 

attractors. We have established the fact that the regions of existence of chaotic attractors occupy large domains in the parameter 

space of the system of equation (9). 

We close with the observation that we have compared the results for the cases of ideal and nonideal excitation of 

oscillations of the free surface of the liquid. The system of equations for ideal excitation are readily obtained from the system 

(9). The fifth equation in the system (9) needs to be discarded for ideal excitation, and v must be regarded as a given constant 

rather than an unknown function in the other four equations. This transformation renders the system of equations numerically 

integrable for the same values of A, B, and ~ and for the same initial values as in (10). The value of v is varied in the interval 

(2v l, 2~2), where v 1 and v z are the minimum and maximum amplitudes, respectively, of the detuning oscillations for steady states 

in the case of nonideal excitation. The corresponding computations are carried out with very small increments of the detuning 

v. It has been established that stable equilibrium positions are the only attractors of the given system of equations for those 

parameters so chosen in the ideal excitation case. Consequently, "ideal" computational models yield incorrect results for the 
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excitation of oscillations by a source of limited power, because entire classes of steady states, including the chaotic kind, become 
undetectable. 

We have thus arrived at the following main results in an investigation of the nonlinear interaction of the dynamical 
system {liquid in tank + electric motor}. We have proved the existence of chaotic attractors of the investigated dynamical system 
in parametric oscillations. We have confirmed that the transition from regular to chaotic motions can take place either by the 
Feigenbaum scenario or through intermittency. We have investigated the bifurcations of chaotic attractors. We have described 
in detail the quantitative and qualitative characteristics of various types of chaotic attractors existing in the system. 
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